chapter12_4_1, chapter12_4_2, and chapter12_4_3 Modeling in the Frequency Domain for Example 12.8

Method 1

% Onwubolu, G. C. % Mechatronics: Principles & Applications % Elsevier % % Mechatronics: Principles & Applications Toolbox Version 1.0 % Copyright © 2005 by Elsevier % % Chapter 12.4: Block diagrams % Example 12.8. Method 1 % Solution via Series, Parallel, & Feedback Commands: MATLAB can be used for block diagram % reduction. Three methods are available: (1) Solution via Series, Parallel, & % Feedback Commands, (2) Solution via Algebraic Operations, and (3) Solution via % Append & Connect Commands. Let us look at each of these methods. % % (1) Solution via Series, Parallel, & Feedback Commands: % The closed-loop transfer function is obtained using the following commands % successively, where the arguments are LTI objects: series(G1,G2) for a cascade % connection of G1(s) and G2(s); parallel(G1,G2) for a parallel connection of % G1(s) and G2(s); feedback(G,H,sign) for a closed-loop connection with G(s) % as the forward path, H(s) as the feedback, and sign is -1 for negativefeedback % systems or +1 for positive-feedback systems. The sign is optional for % negative-feedback systems. % % (2) Solution via Algebraic Operations: % Another approach is to use arithmetic operations successively on LTI transfer % functions as follows: G2*G1 for a cascade connection of G1(s) and G2(s); G1+G2 % for a parallel connection of G1(s) and G2(s); $G/(1+G^*H)$ for a closed-loop % negative-feedback connection with G(s) as the forward path, and H(s) as the % feedback; G/(1-G*H) for positive-feedback systems. When using division we follow % with the function minreal(sys) to cancel common terms in the numerator % and denominator. % % (3) Solution via Append & Connect Commands: % The last method, which defines the topology of the system, may be used effectively

% for complicated systems. First, the subsystems are defined. Second, the subsystems

% are appended, or gathered, into a multiple-input/multiple-output system. Think of

% this system as a single system with an input for each of the subsystems and an

% output for each of the subsystems. Next, the external inputs and outputs are

% specified. Finally, the subsystems are interconnected. Let us elaborate on each

% of these steps.

%

% The subsystems are defined by creating LTI transfer functions for each. The

% subsystems are appended using the command G =

append(G1,G2,G3,G4,.....Gn), where

% the Gi are the LTI transfer functions of the subsystems and G is the appended system.

% Each subsystem is now identified by a number based upon its position in the append

% argument. For example, G3 is 3, based on the fact that it is the third subsystem in

% the append argument (not the fact that we write it as G3).

%

% Now that we have created an appended system, we form the arguments required to

% interconnect their inputs and outputs to form our system. The first step identifies

% which subsystems have the external input signal and which subsystems have the

% external output signal. For example, we use inputs = [1 5 6] and outputs = [3 4] to

% define the external inputs to be the inputs of subsystems 1, 5 and 6 and the external

% outputs to be the outputs of subsystems 3 and 4. For single-input/single-output

% systems, these definitions use scalar quantities. Thus inputs = 5, outputs = 8 define

% the input to subsystem 5 as the external input and the output of subsystem 8 as the

% external output.

%

% At this point we tell the program how all of the subsystems are interconnected.

% We form a Q matrix that has a row for each subsystem whose input comes from another

% subsystem's output. The first column contains the subsystem's number. Subsequent

% columns contain the numbers of the subsystems from which the inputs comes. Thus,

% a typical row might be as follows: [3 6 -7], or subsystem 3's input is formed from

% the sum of the output of subsystem 6 and the negative of the output of subsystem 7.

%

% Finally, all of the interconnection arguments are used in the

% connect(G,Q,inputs,outputs) command, where all of the arguments have been

% previously defined.

%

% Let us demonstrate the three methods for finding the total transfer function by

% looking at the back endpapers and finding the closed-loop transfer function of

% the pitch control loop for the UFSS with K1 = K2 = 1 (Johnson, 1980). The last

% method using append and connect requires that all subsystems be proper (the order

% of the numerator cannot be greater than the order of the denominator). The pitch

% rate sensor violates this requirement. Thus, for the third method, we perform some

% block diagram maneuvers by pushing the pitch rate sensor to the left past the

% summing junction and combining the resulting blocks with the pitch gain and the

% elevator actuator. These changes are reflected in the program. The student should

% verify all computer results with hand calculations.

'Example 12.8'

'Solution via Series, Parallel, & Feedback Commands' %Dispaly label.

% Display label.				
numg1=[-1];	% Define numerator of G1(s).			
deng1=[1];	% Define denominator of G1(s).			
numg2=[0 3];	% Define numerator of G2(s).			
deng2=[1 3];	% Define denominator of G2(s).			
numg3=-0.2*[1 0.5];	% Define numerator of G3(s).			
deng3=conv([1 1],[1 0	.5 0.05]);			
	% Define denominator of G3(s).			
numh1=[-1 0];	% Define numerator of H1(s).			
denh1=[0 1];	% Define denominator of H1(s).			
G1=tf(numg1,deng1);	% Create LTI transfer function,			
	% G1(s).			
G2=tf(numg2,deng2);	% Create LTI transfer function,			
	% G2(s).			
G3=tf(numg3,deng3);	% Create LTI transfer function,			
	% G3(s).			
H1=tf(numh1,denh1);	% Create LTI transfer function,			
	% H1(s).			

G4=series(G2,G3);% Calculate product of elevator and % vehicle dynamics. % Calculate closed-loop transfer G5=feedback(G4,H1); % function of inner loop. % Multiply inner-loop transfer Ge=series(G1,G5); % function and pitch gain. 'T(s) via Series, Parallel, & Feedback Commands' % Display label. T=feedback(Ge,1) % Find closed-loop transfer function. Pause Method 2 % Onwubolu, G. C. % Mechatronics: Principles & Applications % Elsevier % % Mechatronics: Principles & Applications Toolbox Version 1.0 % Copyright © 2005 by Elsevier % % Chapter 12.4: Block diagrams % Example 12.8, Method 2 % Solution via Algebraic Operations: MATLAB can be used for block diagram % reduction. Three methods are available: (1) Solution via Series, Parallel, & % Feedback Commands, (2) Solution via Algebraic Operations, and (3) Solution via % Append & Connect Commands. Let us look at each of these methods. % % (1) Solution via Series, Parallel, & Feedback Commands: % The closed-loop transfer function is obtained using the following commands % successively, where the arguments are LTI objects: series(G1,G2) for a cascade % connection of G1(s) and G2(s); parallel(G1,G2) for a parallel connection of % G1(s) and G2(s); feedback(G,H,sign) for a closed-loop connection with G(s) % as the forward path, H(s) as the feedback, and sign is -1 for negativefeedback % systems or +1 for positive-feedback systems. The sign is optional for % negative-feedback systems. % % (2) Solution via Algebraic Operations: % Another approach is to use arithmetic operations successively on LTI transfer % functions as follows: G2*G1 for a cascade connection of G1(s) and G2(s); G1+G2 % for a parallel connection of G1(s) and G2(s); $G/(1+G^*H)$ for a closed-loop % negative-feedback connection with G(s) as the forward path, and H(s) as the

% feedback; $G/(1-G^*H)$ for positive-feedback systems. When using division we follow

% with the function minreal(sys) to cancel common terms in the numerator % and denominator.

%

% (3) Solution via Append & Connect Commands:

% The last method, which defines the topology of the system, may be used effectively

% for complicated systems. First, the subsystems are defined. Second, the subsystems

% are appended, or gathered, into a multiple-input/multiple-output system. Think of

% this system as a single system with an input for each of the subsystems and an

% output for each of the subsystems. Next, the external inputs and outputs are

% specified. Finally, the subsystems are interconnected. Let us elaborate on each

% of these steps.

%

% The subsystems are defined by creating LTI transfer functions for each. The

% subsystems are appended using the command G = append(G1,G2,G3,G4,.....Gn), where

% the Gi are the LTI transfer functions of the subsystems and G is the appended system.

% Each subsystem is now identified by a number based upon its position in the append

% argument. For example, G3 is 3, based on the fact that it is the third subsystem in

% the append argument (not the fact that we write it as G3). %

% Now that we have created an appended system, we form the arguments required to

% interconnect their inputs and outputs to form our system. The first step identifies

% which subsystems have the external input signal and which subsystems have the

% external output signal. For example, we use inputs = [1 5 6] and outputs = [3 4] to

% define the external inputs to be the inputs of subsystems 1, 5 and 6 and the external

% outputs to be the outputs of subsystems 3 and 4. For single-input/single-output

% systems, these definitions use scalar quantities. Thus inputs = 5, outputs = 8 define

% the input to subsystem 5 as the external input and the output of subsystem 8 as the

% external output.

%

% At this point we tell the program how all of the subsystems are interconnected.

% We form a Q matrix that has a row for each subsystem whose input comes from another

% subsystem's output. The first column contains the subsystem's number. Subsequent

% columns contain the numbers of the subsystems from which the inputs comes. Thus,

% a typical row might be as follows: [3 6 -7], or subsystem 3's input is formed from

% the sum of the output of subsystem 6 and the negative of the output of subsystem 7.

%

% Finally, all of the interconnection arguments are used in the

% connect(G,Q,inputs,outputs) command, where all of the arguments have been

% previously defined.

%

% Let us demonstrate the three methods for finding the total transfer function by

% looking at the back endpapers and finding the closed-loop transfer function of

% the pitch control loop for the UFSS with K1 = K2 = 1 (Johnson, 1980). The last

% method using append and connect requires that all subsystems be proper (the order

% of the numerator cannot be greater than the order of the denominator). The pitch

% rate sensor violates this requirement. Thus, for the third method, we perform some

% block diagram maneuvers by pushing the pitch rate sensor to the left past the

% summing junction and combining the resulting blocks with the pitch gain and the

% elevator actuator. These changes are reflected in the program. The student should

% verify all computer results with hand calculations. 'Example 12.8'

'Solution via Algebraic Operations'

% Display label.				
numg1=[-1];	% Define numerator of G1(s).			
deng1=[1];	% Define denominator of G1(s).			
numg2=[0 3];	% Define numerator of G2(s).			
deng2=[1 3];	% Define denominator of G2(s).			
numg3=-0.2*[1 0.5];	% Define numerator of G3(s).			
deng3=conv([1 1],[1	0.5 0.05]);			
	% Define denominator of G3(s).			
numh1=[-1 0];	% Define numerator of H1(s).			
denh1=[0 1];	% Define denominator of H1(s).			

G1=tf(numg1,deng1);		% Create LTI transfer function,
G2=tf(numg2,deng2);	% G1(s).	% Create LTI transfer function,
G3=tf(numg3,deng3);	70 GZ(S).	% Create LTI transfer function,
H1=tf(numh1.denh1):	% G3(s).	% Create LTI transfer function.
C4 C3*C3	% H1(s).	Coloulate product of elevator and
G4=G3 G2,	% vehicle	e dynamics.
G5=G4/(1+G4*H1);		% Calculate closed-loop transfer
	% functio	on of inner loop.
G5=minreal(G5);	%	Cancel common terms.
Ge=G5*G1	%	Multiply inner-loop transfer
	% functio	Ins.

Pause

Method 3

% Onwubolu, G. C.

% Mechatronics: Principles & Applications

% Elsevier

%

% Mechatronics: Principles & Applications Toolbox Version 1.0

% Copyright © 2005 by Elsevier

%

% Chapter 12.4: Block diagrams

% Example 12.8, Method 3

% Solution via Append & Connect Commands: MATLAB can be used for block diagram

% reduction. Three methods are available: (1) Solution via Series, Parallel, & % Feedback Commands, (2) Solution via Algebraic Operations, and (3) Solution via

% Append & Connect Commands. Let us look at each of these methods. %

% (1) Solution via Series, Parallel, & Feedback Commands:

% The closed-loop transfer function is obtained using the following commands % successively, where the arguments are LTI objects: series(G1,G2) for a cascade

% connection of G1(s) and G2(s); parallel(G1,G2) for a parallel connection of % G1(s) and G2(s); feedback(G,H,sign) for a closed-loop connection with G(s)

% as the forward path, H(s) as the feedback, and sign is -1 for negative-feedback

% systems or +1 for positive-feedback systems. The sign is optional for % negative-feedback systems.

%

% (2) Solution via Algebraic Operations:

% Another approach is to use arithmetic operations successively on LTI transfer

% functions as follows: G2*G1 for a cascade connection of G1(s) and G2(s); G1+G2

% for a parallel connection of G1(s) and G2(s); G/(1+G*H) for a closed-loop % negative-feedback connection with G(s) as the forward path, and H(s) as the

% feedback; G/(1-G*H) for positive-feedback systems. When using division we follow

% with the function minreal(sys) to cancel common terms in the numerator % and denominator.

%

% (3) Solution via Append & Connect Commands:

% The last method, which defines the topology of the system, may be used effectively

% for complicated systems. First, the subsystems are defined. Second, the subsystems

% are appended, or gathered, into a multiple-input/multiple-output system. Think of

% this system as a single system with an input for each of the subsystems and an

% output for each of the subsystems. Next, the external inputs and outputs are

% specified. Finally, the subsystems are interconnected. Let us elaborate on each

% of these steps.

%

% The subsystems are defined by creating LTI transfer functions for each. The

% subsystems are appended using the command G = append(G1,G2,G3,G4,...,Gn), where

% the Gi are the LTI transfer funtions of the subsystems and G is the appended system.

% Each subsystem is now identified by a number based upon its position in the append

% argument. For example, G3 is 3, based on the fact that it is the third subsystem in

% the append argument (not the fact that we write it as G3). %

% Now that we have created an appended system, we form the arguments required to

% interconnect their inputs and outputs to form our system. The first step identifies

% which subsystems have the external input signal and which subsystems have the

% external output signal. For example, we use inputs = [1 5 6] and outputs = [3 4] to

% define the external inputs to be the inputs of subsystems 1, 5 and 6 and the external

% outputs to be the outputs of subsystems 3 and 4. For single-input/single-output

% systems, these definitions use scalar quantities. Thus inputs = 5, outputs = 8 define

% the input to subsystem 5 as the external input and the output of subsystem 8 as the

% external output.

%

% At this point we tell the program how all of the subsystems are interconnected.

% We form a Q matrix that has a row for each subsystem whose input comes from another

% subsystem's output. The first column contains the subsystem's number. Subsequent

% columns contain the numbers of the subsystems from which the inputs comes. Thus,

% a typical row might be as follows: [3 6 -7], or subsystem 3's input is formed from

% the sum of the output of subsystem 6 and the negative of the output of subsystem 7.

%

% Finally, all of the interconnection arguments are used in the % connect(G,Q,inputs,outputs) command, where all of the arguments have been

% previously defined.

%

'Solution via Append & Connect Commands'

% Display label.			
'G1(s) = (-1)*(1/(-s)) =	1/s' % Display label.		
numg1=[1];	% Define numerator of G1(s).		
deng1=[1 0];	% Define denominator of G1(s).		
G1=tf(numg1,deng1)	% Create LTI transfer function,		
	% G1(s) = pitch gain*(1/pitch rate sensor).		
$G_{2(s)} = (-s)^{*}(3/(s+3))^{*}$	% Display label.		
numg2=[-3 0];	% Define numerator of G2(s).		
deng2=[1 3];	% Define denominator of G2(s).		
G2=tf(numg2,deng2)	% Create LTI transfer function,		
	% $G2(s)$ = pitch rate sensor* vehicle dynamics.		
'G3(s) = -0.2(s+0.5)/((s+1)(s^2+0.5s+0.05))'			
	% Display label.		
numg3=-0.2*[1 0.5];	% Define numerator of G3(s).		
deng3=conv([1 1],[1 0.5 0.05]);			
	% Define denominator of G3(s).		
G3=tf(numg3,deng3)	% Create LTI transfer function,		
	% G3(s) = vehicle dynamics.		
System=append(G1,G	62,G3); % Gather all subsystems		
input=1;	% Input is at first subsystem, G1(s).		
output=3;	% Output is output of third subsystem, G3(s).		
Q=[1 -3 0	% Subsystem 1, G1(s), gets its input from the		
	% negative of the output of subsystem 3, G3(s).		

21-3	% Subsystem 2, G2(s), gets its input from subsystem
	% 1, G1(s), and the negative of the output of
	% subsystem 3, G3(s).
3 2 0];	% Subsystem 3, G3(s), gets its input from subsystem
	% 2, G2(s).
T=connect(System	n,Q,input,output); % Connect the subsystems.
'T(s) via Append &	& Connect Commands'% Display label.
T=tf(T);	% Create LTI closed-loop transfer function,
T=minreal(T)	% Cancel common terms.
pause	
pause	