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Frequency Domain for Example 12.8 
 
Method 1 
 
% Onwubolu, G. C.  
% Mechatronics: Principles & Applications 
% Elsevier  
% 
% Mechatronics: Principles & Applications Toolbox Version 1.0  
% Copyright © 2005 by Elsevier 
% 
% Chapter 12.4: Block diagrams 
% Example 12.8, Method 1 
% Solution via Series, Parallel, & Feedback Commands:     MATLAB can be 
used for block diagram  
% reduction. Three methods are available: (1) Solution via Series, Parallel, &  
% Feedback Commands, (2) Solution via Algebraic Operations, and (3) 
Solution via  
% Append & Connect Commands. Let us look at each of these methods. 
% 
% (1) Solution via Series, Parallel, & Feedback Commands:  
% The closed-loop transfer function is obtained using the following commands  
% successively, where the arguments are LTI objects: series(G1,G2) for a 
cascade  
% connection of G1(s) and G2(s); parallel(G1,G2) for a parallel connection of  
% G1(s) and G2(s); feedback(G,H,sign) for a closed-loop connection with 
G(s)  
% as the forward path, H(s) as the feedback, and sign is -1 for negative-
feedback  
% systems or +1 for positive-feedback systems. The sign is optional for  
% negative-feedback systems.  
% 
% (2) Solution via Algebraic Operations:  
% Another approach is to use arithmetic operations successively on LTI 
transfer  
% functions as follows: G2*G1 for a cascade connection of G1(s) and G2(s); 
G1+G2  
% for a parallel connection of G1(s) and G2(s); G/(1+G*H) for a closed-loop  
% negative-feedback connection with G(s) as the forward path, and H(s) as 
the  
% feedback; G/(1-G*H) for positive-feedback systems. When using division 
we follow  
% with the function minreal(sys) to cancel common terms in the numerator  
% and denominator. 
% 
% (3) Solution via Append & Connect Commands: 
% The last method, which defines the topology of the system,  may be used 
effectively  



% for complicated systems. First, the subsystems are defined. Second, the 
subsystems  
% are appended, or gathered, into a multiple-input/multiple-output system. 
Think of  
% this system as a single system with an input for each of the subsystems 
and an  
% output for each of the subsystems. Next, the external inputs and outputs 
are  
% specified. Finally, the subsystems are interconnected. Let us elaborate on 
each  
% of these steps.  
% 
% The subsystems are defined by creating LTI transfer functions for each. 
The  
% subsystems are appended using the command G = 
append(G1,G2,G3,G4,.....Gn), where  
% the Gi are the LTI transfer funtions of the subsystems and G is the 
appended system.  
% Each subsystem is now identified by a number based upon its position in 
the append  
% argument. For example, G3 is 3, based on the fact that it is the third 
subsystem in  
% the append argument (not the fact that we write it as G3).  
% 
% Now that we have created an appended system, we form the arguments 
required to  
% interconnect their inputs and outputs to form our system. The first step 
identifies  
% which subsystems have the external input signal and which subsystems 
have the  
% external output signal. For example, we use inputs = [1 5 6] and outputs = 
[3 4] to  
% define the external inputs to be the inputs  of subsystems 1, 5 and 6 and 
the external  
% outputs to be the outputs of subsystems 3 and 4. For single-input/single-
output  
% systems, these definitions use scalar quantities. Thus inputs = 5, outputs = 
8 define  
% the input to subsystem 5 as the external input and the output of subsystem 
8 as the  
% external output.  
% 
% At this point we tell the program how all of the subsystems are 
interconnected.  
% We form a Q matrix that has a row for each subsystem whose input comes 
from another  
% subsystem's output. The first column contains the subsystem's number. 
Subsequent   
% columns contain the numbers of the subsystems from which the inputs 
comes. Thus,   



% a typical row might be as follows: [3 6 -7], or subsystem 3's input is formed 
from   
% the sum of the output of subsystem 6 and the negative of the output of 
subsystem 7.  
% 
% Finally, all of the interconnection arguments are used in the  
% connect(G,Q,inputs,outputs) command, where all of the arguments have 
been  
% previously defined.  
% 
% Let us demonstrate the three methods for finding the total transfer function 
by  
% looking at the back endpapers and finding the closed-loop transfer function 
of  
% the pitch control loop for the UFSS with K1 = K2 = 1 (Johnson, 1980). The 
last  
% method using append and connect requires that all subsystems be proper 
(the order   
% of the numerator cannot be greater than the order of the denominator). The 
pitch   
% rate sensor violates this requirement. Thus, for the third method, we 
perform some   
% block diagram maneuvers by pushing the pitch rate sensor to the left past 
the   
% summing junction and combining the resulting blocks with the pitch gain 
and the   
% elevator actuator. These changes are reflected in the program. The student 
should   
% verify all computer results with hand calculations. 
'Example 12.8' 
 
'Solution via Series, Parallel, & Feedback Commands' %Dispaly label. 
                                    % Display label. 
numg1=[-1];                         % Define numerator of G1(s). 
deng1=[1];                          % Define denominator of G1(s). 
numg2=[0 3];                        % Define numerator of G2(s). 
deng2=[1 3];                        % Define denominator of G2(s). 
numg3=-0.2*[1 0.5];                 % Define numerator of G3(s). 
deng3=conv([1 1],[1 0.5 0.05]);  
                                    % Define denominator of G3(s). 
numh1=[-1 0];                       % Define numerator of H1(s). 
denh1=[0 1];                        % Define denominator of H1(s). 
G1=tf(numg1,deng1);                 % Create LTI transfer function, 
                                    % G1(s). 
G2=tf(numg2,deng2);                 % Create LTI transfer function, 
                                    % G2(s). 
G3=tf(numg3,deng3);                 % Create LTI transfer function, 
                                    % G3(s). 
H1=tf(numh1,denh1);                 % Create LTI transfer function, 
                                    % H1(s). 



G4=series(G2,G3);                   % Calculate product of elevator and  
                                    % vehicle dynamics. 
G5=feedback(G4,H1);                 % Calculate closed-loop transfer  
                                    % function of inner loop. 
Ge=series(G1,G5);                   % Multiply inner-loop transfer 
                                    % function and pitch gain. 
'T(s) via Series, Parallel, & Feedback Commands'                               
                                    % Display label.  
T=feedback(Ge,1)                    % Find closed-loop transfer function.  
Pause 
 
Method 2 
 
% Onwubolu, G. C.  
% Mechatronics: Principles & Applications 
% Elsevier  
% 
% Mechatronics: Principles & Applications Toolbox Version 1.0  
% Copyright © 2005 by Elsevier 
% 
% Chapter 12.4: Block diagrams 
% Example 12.8, Method 2  
% Solution via Algebraic Operations:     MATLAB can be used for block 
diagram  
% reduction. Three methods are available: (1) Solution via Series, Parallel, &  
% Feedback Commands, (2) Solution via Algebraic Operations, and (3) 
Solution via  
% Append & Connect Commands. Let us look at each of these methods. 
% 
% (1) Solution via Series, Parallel, & Feedback Commands:  
% The closed-loop transfer function is obtained using the following commands  
% successively, where the arguments are LTI objects: series(G1,G2) for a 
cascade  
% connection of G1(s) and G2(s); parallel(G1,G2) for a parallel connection of  
% G1(s) and G2(s); feedback(G,H,sign) for a closed-loop connection with 
G(s)  
% as the forward path, H(s) as the feedback, and sign is -1 for negative-
feedback  
% systems or +1 for positive-feedback systems. The sign is optional for  
% negative-feedback systems.  
% 
% (2) Solution via Algebraic Operations:  
% Another approach is to use arithmetic operations successively on LTI 
transfer  
% functions as follows: G2*G1 for a cascade connection of G1(s) and G2(s); 
G1+G2  
% for a parallel connection of G1(s) and G2(s); G/(1+G*H) for a closed-loop  
% negative-feedback connection with G(s) as the forward path, and H(s) as 
the  



% feedback; G/(1-G*H) for positive-feedback systems. When using division 
we follow  
% with the function minreal(sys) to cancel common terms in the numerator  
% and denominator. 
% 
% (3) Solution via Append & Connect Commands: 
% The last method, which defines the topology of the system,  may be used 
effectively  
% for complicated systems. First, the subsystems are defined. Second, the 
subsystems  
% are appended, or gathered, into a multiple-input/multiple-output system. 
Think of  
% this system as a single system with an input for each of the subsystems 
and an  
% output for each of the subsystems. Next, the external inputs and outputs 
are  
% specified. Finally, the subsystems are interconnected. Let us elaborate on 
each  
% of these steps.  
% 
% The subsystems are defined by creating LTI transfer functions for each. 
The  
% subsystems are appended using the command G = 
append(G1,G2,G3,G4,.....Gn), where  
% the Gi are the LTI transfer funtions of the subsystems and G is the 
appended system.  
% Each subsystem is now identified by a number based upon its position in 
the append  
% argument. For example, G3 is 3, based on the fact that it is the third 
subsystem in  
% the append argument (not the fact that we write it as G3).  
% 
% Now that we have created an appended system, we form the arguments 
required to  
% interconnect their inputs and outputs to form our system. The first step 
identifies  
% which subsystems have the external input signal and which subsystems 
have the  
% external output signal. For example, we use inputs = [1 5 6] and outputs = 
[3 4] to  
% define the external inputs to be the inputs  of subsystems 1, 5 and 6 and 
the external  
% outputs to be the outputs of subsystems 3 and 4. For single-input/single-
output  
% systems, these definitions use scalar quantities. Thus inputs = 5, outputs = 
8 define  
% the input to subsystem 5 as the external input and the output of subsystem 
8 as the  
% external output.  
% 



% At this point we tell the program how all of the subsystems are 
interconnected.  
% We form a Q matrix that has a row for each subsystem whose input comes 
from another  
% subsystem's output. The first column contains the subsystem's number. 
Subsequent   
% columns contain the numbers of the subsystems from which the inputs 
comes. Thus,   
% a typical row might be as follows: [3 6 -7], or subsystem 3's input is formed 
from   
% the sum of the output of subsystem 6 and the negative of the output of 
subsystem 7.  
% 
% Finally, all of the interconnection arguments are used in the  
% connect(G,Q,inputs,outputs) command, where all of the arguments have 
been  
% previously defined.  
% 
% Let us demonstrate the three methods for finding the total transfer function 
by  
% looking at the back endpapers and finding the closed-loop transfer function 
of  
% the pitch control loop for the UFSS with K1 = K2 = 1 (Johnson, 1980). The 
last  
% method using append and connect requires that all subsystems be proper 
(the order   
% of the numerator cannot be greater than the order of the denominator). The 
pitch   
% rate sensor violates this requirement. Thus, for the third method, we 
perform some   
% block diagram maneuvers by pushing the pitch rate sensor to the left past 
the   
% summing junction and combining the resulting blocks with the pitch gain 
and the   
% elevator actuator. These changes are reflected in the program. The student 
should   
% verify all computer results with hand calculations. 
'Example 12.8' 
 
'Solution via Algebraic Operations' 
                                    % Display label. 
numg1=[-1];                         % Define numerator of G1(s). 
deng1=[1];                          % Define denominator of G1(s). 
numg2=[0 3];                        % Define numerator of G2(s). 
deng2=[1 3];                        % Define denominator of G2(s). 
numg3=-0.2*[1 0.5];                 % Define numerator of G3(s). 
deng3=conv([1 1],[1 0.5 0.05]);  
                                    % Define denominator of G3(s). 
numh1=[-1 0];                       % Define numerator of H1(s). 
denh1=[0 1];                        % Define denominator of H1(s). 



G1=tf(numg1,deng1);                 % Create LTI transfer function, 
                                    % G1(s). 
G2=tf(numg2,deng2);                 % Create LTI transfer function, 
                                    % G2(s). 
G3=tf(numg3,deng3);                 % Create LTI transfer function, 
                                    % G3(s). 
H1=tf(numh1,denh1);                 % Create LTI transfer function, 
                                    % H1(s). 
G4=G3*G2;                           % Calculate product of elevator and 
                                    % vehicle dynamics. 
G5=G4/(1+G4*H1);                    % Calculate closed-loop transfer 
                                    % function of inner loop. 
G5=minreal(G5);                     % Cancel common terms. 
Ge=G5*G1                            % Multiply inner-loop transfer 
                                    % functions. 
Pause 
 
Method 3 
 
% Onwubolu, G. C.  
% Mechatronics: Principles & Applications 
% Elsevier  
% 
% Mechatronics: Principles & Applications Toolbox Version 1.0  
% Copyright © 2005 by Elsevier 
% 
% Chapter 12.4: Block diagrams 
% Example 12.8, Method 3 
% Solution via Append & Connect Commands:     MATLAB can be used for 
block diagram  
% reduction. Three methods are available: (1) Solution via Series, Parallel, &  
% Feedback Commands, (2) Solution via Algebraic Operations, and (3) 
Solution via  
% Append & Connect Commands. Let us look at each of these methods. 
% 
% (1) Solution via Series, Parallel, & Feedback Commands:  
% The closed-loop transfer function is obtained using the following commands  
% successively, where the arguments are LTI objects: series(G1,G2) for a 
cascade  
% connection of G1(s) and G2(s); parallel(G1,G2) for a parallel connection of  
% G1(s) and G2(s); feedback(G,H,sign) for a closed-loop connection with 
G(s)  
% as the forward path, H(s) as the feedback, and sign is -1 for negative-
feedback  
% systems or +1 for positive-feedback systems. The sign is optional for  
% negative-feedback systems.  
% 
% (2) Solution via Algebraic Operations:  
% Another approach is to use arithmetic operations successively on LTI 
transfer  



% functions as follows: G2*G1 for a cascade connection of G1(s) and G2(s); 
G1+G2  
% for a parallel connection of G1(s) and G2(s); G/(1+G*H) for a closed-loop  
% negative-feedback connection with G(s) as the forward path, and H(s) as 
the  
% feedback; G/(1-G*H) for positive-feedback systems. When using division 
we follow  
% with the function minreal(sys) to cancel common terms in the numerator  
% and denominator. 
% 
% (3) Solution via Append & Connect Commands: 
% The last method, which defines the topology of the system,  may be used 
effectively  
% for complicated systems. First, the subsystems are defined. Second, the 
subsystems  
% are appended, or gathered, into a multiple-input/multiple-output system. 
Think of  
% this system as a single system with an input for each of the subsystems 
and an  
% output for each of the subsystems. Next, the external inputs and outputs 
are  
% specified. Finally, the subsystems are interconnected. Let us elaborate on 
each  
% of these steps.  
% 
% The subsystems are defined by creating LTI transfer functions for each. 
The  
% subsystems are appended using the command G = 
append(G1,G2,G3,G4,.....Gn), where  
% the Gi are the LTI transfer funtions of the subsystems and G is the 
appended system.  
% Each subsystem is now identified by a number based upon its position in 
the append  
% argument. For example, G3 is 3, based on the fact that it is the third 
subsystem in  
% the append argument (not the fact that we write it as G3).  
% 
% Now that we have created an appended system, we form the arguments 
required to  
% interconnect their inputs and outputs to form our system. The first step 
identifies  
% which subsystems have the external input signal and which subsystems 
have the  
% external output signal. For example, we use inputs = [1 5 6] and outputs = 
[3 4] to  
% define the external inputs to be the inputs  of subsystems 1, 5 and 6 and 
the external  
% outputs to be the outputs of subsystems 3 and 4. For single-input/single-
output  



% systems, these definitions use scalar quantities. Thus inputs = 5, outputs = 
8 define  
% the input to subsystem 5 as the external input and the output of subsystem 
8 as the  
% external output.  
% 
% At this point we tell the program how all of the subsystems are 
interconnected.  
% We form a Q matrix that has a row for each subsystem whose input comes 
from another  
% subsystem's output. The first column contains the subsystem's number. 
Subsequent   
% columns contain the numbers of the subsystems from which the inputs 
comes. Thus,   
% a typical row might be as follows: [3 6 -7], or subsystem 3's input is formed 
from   
% the sum of the output of subsystem 6 and the negative of the output of 
subsystem 7.  
% 
% Finally, all of the interconnection arguments are used in the  
% connect(G,Q,inputs,outputs) command, where all of the arguments have 
been  
% previously defined.  
% 
 
 
'Solution via Append & Connect Commands' 
                                    % Display label. 
'G1(s) = (-1)*(1/(-s)) = 1/s'       % Display label. 
numg1=[1];                          % Define numerator of G1(s). 
deng1=[1 0];                        % Define denominator of G1(s). 
G1=tf(numg1,deng1)                  % Create LTI transfer function, 
                                    % G1(s) = pitch gain*(1/pitch rate sensor). 
'G2(s) = (-s)*(3/(s+3)'             % Display label. 
numg2=[-3 0];                       % Define numerator of G2(s). 
deng2=[1 3];                        % Define denominator of G2(s). 
G2=tf(numg2,deng2)                  % Create LTI transfer function, 
                                    % G2(s) = pitch rate sensor* vehicle dynamics. 
'G3(s) = -0.2(s+0.5)/((s+1)(s^2+0.5s+0.05))' 
                                    % Display label. 
numg3=-0.2*[1 0.5];                 % Define numerator of G3(s). 
deng3=conv([1 1],[1 0.5 0.05]);  
                                    % Define denominator of G3(s). 
G3=tf(numg3,deng3)                  % Create LTI transfer function, 
                                    % G3(s) = vehicle dynamics. 
System=append(G1,G2,G3);            % Gather all subsystems 
input=1;                            % Input is at first subsystem, G1(s). 
output=3;                           % Output is output of third subsystem, G3(s). 
Q=[1 -3 0                           % Subsystem 1, G1(s), gets its input from the   
                                    % negative of the output of subsystem 3, G3(s). 



2 1 -3                              % Subsystem 2, G2(s), gets its input from subsystem 
                                    % 1, G1(s), and the negative of the output of  
                                    % subsystem 3, G3(s). 
3 2 0];                             % Subsystem 3, G3(s), gets its input from subsystem 
                                    % 2, G2(s). 
T=connect(System,Q,input,output);   % Connect the subsystems. 
'T(s) via Append & Connect Commands'% Display label. 
T=tf(T);                            % Create LTI closed-loop transfer function, 
T=minreal(T)                        % Cancel common terms.     
pause 
 


