chapter12_4_1, chapter12_4_2, and chapter12_4_3 Modeling in the Frequency Domain for Example 12.8

Method 1

\% Onwubolu, G. C.
\% Mechatronics: Principles \& Applications
\% Elsevier
\%
\% Mechatronics: Principles \& Applications Toolbox Version 1.0
\% Copyright © 2005 by Elsevier
\%
\% Chapter 12.4: Block diagrams
\% Example 12.8, Method 1
\% Solution via Series, Parallel, \& Feedback Commands: MATLAB can be used for block diagram
\% reduction. Three methods are available: (1) Solution via Series, Parallel, \& \% Feedback Commands, (2) Solution via Algebraic Operations, and (3) Solution via
\% Append \& Connect Commands. Let us look at each of these methods. \%
\% (1) Solution via Series, Parallel, \& Feedback Commands:
\% The closed-loop transfer function is obtained using the following commands \% successively, where the arguments are LTI objects: series(G1,G2) for a cascade
\% connection of G1(s) and G2(s); parallel(G1,G2) for a parallel connection of \% G1(s) and G2(s); feedback(G,H,sign) for a closed-loop connection with G(s)
\% as the forward path, $\mathrm{H}(\mathrm{s})$ as the feedback, and sign is -1 for negativefeedback
\% systems or +1 for positive-feedback systems. The sign is optional for \% negative-feedback systems.
\%
\% (2) Solution via Algebraic Operations:
\% Another approach is to use arithmetic operations successively on LTI transfer
\% functions as follows: G2*G1 for a cascade connection of G1(s) and G2(s); G1+G2
\% for a parallel connection of G1(s) and G2(s); G/(1+G*H) for a closed-loop \% negative-feedback connection with $\mathrm{G}(\mathrm{s})$ as the forward path, and $\mathrm{H}(\mathrm{s})$ as the
\% feedback; G/(1-G*H) for positive-feedback systems. When using division we follow
\% with the function minreal(sys) to cancel common terms in the numerator $\%$ and denominator.
\%
\% (3) Solution via Append \& Connect Commands:
\% The last method, which defines the topology of the system, may be used effectively
\% for complicated systems. First, the subsystems are defined. Second, the subsystems
$\%$ are appended, or gathered, into a multiple-input/multiple-output system. Think of
\% this system as a single system with an input for each of the subsystems and an
\% output for each of the subsystems. Next, the external inputs and outputs are
\% specified. Finally, the subsystems are interconnected. Let us elaborate on each
\% of these steps.
\%
\% The subsystems are defined by creating LTI transfer functions for each. The
\% subsystems are appended using the command $G=$
append(G1,G2,G3,G4,.....Gn), where
\% the Gi are the LTI transfer funtions of the subsystems and G is the appended system.
\% Each subsystem is now identified by a number based upon its position in the append
$\%$ argument. For example, G3 is 3 , based on the fact that it is the third subsystem in
\% the append argument (not the fact that we write it as G3).
\%
\% Now that we have created an appended system, we form the arguments required to
\% interconnect their inputs and outputs to form our system. The first step identifies
\% which subsystems have the external input signal and which subsystems have the
\% external output signal. For example, we use inputs = [1 5 6] and outputs = [3 4] to
\% define the external inputs to be the inputs of subsystems 1,5 and 6 and the external
$\%$ outputs to be the outputs of subsystems 3 and 4 . For single-input/singleoutput
$\%$ systems, these definitions use scalar quantities. Thus inputs $=5$, outputs $=$ 8 define
\% the input to subsystem 5 as the external input and the output of subsystem
8 as the
\% external output.
\%
\% At this point we tell the program how all of the subsystems are interconnected.
\% We form a Q matrix that has a row for each subsystem whose input comes from another
\% subsystem's output. The first column contains the subsystem's number. Subsequent
\% columns contain the numbers of the subsystems from which the inputs comes. Thus,
\% a typical row might be as follows: [3 6-7], or subsystem 3's input is formed from
\% the sum of the output of subsystem 6 and the negative of the output of subsystem 7.
\%
\% Finally, all of the interconnection arguments are used in the
\% connect(G,Q,inputs,outputs) command, where all of the arguments have been
\% previously defined.
\%
\% Let us demonstrate the three methods for finding the total transfer function by
\% looking at the back endpapers and finding the closed-loop transfer function of
\% the pitch control loop for the UFSS with K1 = K2 = 1 (Johnson, 1980). The last
\% method using append and connect requires that all subsystems be proper (the order
\% of the numerator cannot be greater than the order of the denominator). The pitch
\% rate sensor violates this requirement. Thus, for the third method, we perform some
\% block diagram maneuvers by pushing the pitch rate sensor to the left past the
\% summing junction and combining the resulting blocks with the pitch gain and the
\% elevator actuator. These changes are reflected in the program. The student should
\% verify all computer results with hand calculations.
'Example 12.8'
'Solution via Series, Parallel, \& Feedback Commands' \%Dispaly label.
\% Display label.
numg1=[-1]; \quad \% Define numerator of G1(s).
deng1=[1]; \quad \% Define denominator of G1(s).
numg2=[03]; \quad \% Define numerator of G2(s).
deng2=[13]; \quad \% Define denominator of G2(s).
numg3=-0.2*[1 0.5]; \quad \% Define numerator of G3(s).
deng3=conv([1 1],[1 0.50 .05$]) ;$
\% Define denominator of G3(s).
numh1=[-1 0]; \quad \% Define numerator of H1(s).
denh1=[01]; \quad \% Define denominator of H1(s).
G1=tf(numg1, deng1); $\%$ Create LTI transfer function, \% G1(s).
G2=tf(numg2, deng2); \% Create LTI transfer function, \% G2(s).
G3=tf(numg3,deng3); \% Create LTI transfer function, \% G3(s).
H1=tf(numh1,denh1); \% Create LTI transfer function, \% H1(s).

```
G4=series(G2,G3); % Calculate product of elevator and
    % vehicle dynamics.
G5=feedback(G4,H1); % Calculate closed-loop transfer
    % function of inner loop.
Ge=series(G1,G5); % Multiply inner-loop transfer
    % function and pitch gain.
'T(s) via Series, Parallel, & Feedback Commands'
        % Display label.
T=feedback(Ge,1) % Find closed-loop transfer function.
Pause
```


Method 2

\% Onwubolu, G. C.

```
\% Mechatronics: Principles \& Applications
\% Elsevier
\%
\% Mechatronics: Principles \& Applications Toolbox Version 1.0
\% Copyright © 2005 by Elsevier
\%
\% Chapter 12.4: Block diagrams
\% Example 12.8, Method 2
\% Solution via Algebraic Operations: MATLAB can be used for block diagram
\% reduction. Three methods are available: (1) Solution via Series, Parallel, \& \% Feedback Commands, (2) Solution via Algebraic Operations, and (3) Solution via
\% Append \& Connect Commands. Let us look at each of these methods. \%
\% (1) Solution via Series, Parallel, \& Feedback Commands:
\% The closed-loop transfer function is obtained using the following commands \% successively, where the arguments are LTI objects: series(G1,G2) for a cascade
\% connection of G1(s) and G2(s); parallel(G1,G2) for a parallel connection of \(\%\) G1(s) and G2(s); feedback(G,H,sign) for a closed-loop connection with G(s)
\% as the forward path, \(\mathrm{H}(\mathrm{s})\) as the feedback, and sign is -1 for negativefeedback
\% systems or +1 for positive-feedback systems. The sign is optional for \% negative-feedback systems.
\%
\% (2) Solution via Algebraic Operations:
\% Another approach is to use arithmetic operations successively on LTI transfer
\% functions as follows: G2*G1 for a cascade connection of G1(s) and G2(s); G1+G2
\% for a parallel connection of G1(s) and G2(s); G/(1+G*H) for a closed-loop \% negative-feedback connection with \(\mathrm{G}(\mathrm{s})\) as the forward path, and \(\mathrm{H}(\mathrm{s})\) as the
```

\% feedback; G/(1-G*H) for positive-feedback systems. When using division we follow
$\%$ with the function minreal(sys) to cancel common terms in the numerator $\%$ and denominator.
\%
\% (3) Solution via Append \& Connect Commands:
\% The last method, which defines the topology of the system, may be used effectively
\% for complicated systems. First, the subsystems are defined. Second, the subsystems
\% are appended, or gathered, into a multiple-input/multiple-output system. Think of
\% this system as a single system with an input for each of the subsystems and an
\% output for each of the subsystems. Next, the external inputs and outputs are
\% specified. Finally, the subsystems are interconnected. Let us elaborate on each
$\%$ of these steps.
\%
\% The subsystems are defined by creating LTI transfer functions for each.
The
\% subsystems are appended using the command $\mathrm{G}=$
append(G1,G2,G3,G4,.....Gn), where
\% the Gi are the LTI transfer funtions of the subsystems and G is the appended system.
\% Each subsystem is now identified by a number based upon its position in the append
\% argument. For example, G3 is 3 , based on the fact that it is the third subsystem in
\% the append argument (not the fact that we write it as G3).
\%
\% Now that we have created an appended system, we form the arguments required to
$\%$ interconnect their inputs and outputs to form our system. The first step identifies
\% which subsystems have the external input signal and which subsystems have the
\% external output signal. For example, we use inputs = [156] and outputs = [3 4] to
\% define the external inputs to be the inputs of subsystems 1, 5 and 6 and the external
$\%$ outputs to be the outputs of subsystems 3 and 4 . For single-input/singleoutput
$\%$ systems, these definitions use scalar quantities. Thus inputs $=5$, outputs $=$ 8 define
\% the input to subsystem 5 as the external input and the output of subsystem 8 as the \% external output.
\% At this point we tell the program how all of the subsystems are interconnected.
\% We form a Q matrix that has a row for each subsystem whose input comes from another
\% subsystem's output. The first column contains the subsystem's number. Subsequent
\% columns contain the numbers of the subsystems from which the inputs comes. Thus,
\% a typical row might be as follows: [3 6-7], or subsystem 3's input is formed from
\% the sum of the output of subsystem 6 and the negative of the output of subsystem 7.
\%
\% Finally, all of the interconnection arguments are used in the \% connect(G,Q,inputs,outputs) command, where all of the arguments have been
\% previously defined.
\%
\% Let us demonstrate the three methods for finding the total transfer function by
\% looking at the back endpapers and finding the closed-loop transfer function of
\% the pitch control loop for the UFSS with K1 = K2 = 1 (Johnson, 1980). The last
\% method using append and connect requires that all subsystems be proper
(the order
$\%$ of the numerator cannot be greater than the order of the denominator). The
pitch
\% rate sensor violates this requirement. Thus, for the third method, we perform some
\% block diagram maneuvers by pushing the pitch rate sensor to the left past the
\% summing junction and combining the resulting blocks with the pitch gain and the
$\%$ elevator actuator. These changes are reflected in the program. The student should
\% verify all computer results with hand calculations.
'Example 12.8'
'Solution via Algebraic Operations'
\% Display label.
numg1=[-1]; \quad \% Define numerator of G1(s).
deng1=[1]; \quad \% Define denominator of G1(s).
numg2=[03]; \quad \% Define numerator of G2(s).
deng2=[1 3]; \quad \% Define denominator of G2(s).
numg3 $=-0.2 *\left[\begin{array}{ll}1 & 0.5\end{array}\right]$; \quad \% Define numerator of G3(s).
deng3=conv([1 1],[1 0.50 .05$]) ;$
\% Define denominator of G3(s).
numh1=[-1 0]; \quad \% Define numerator of H1(s).
denh1=[01]; \quad \% Define denominator of H1(s).

```
G1=tf(numg1,deng1); % Create LTI transfer function,
    % G1(s).
G2=tf(numg2,deng2); % Create LTI transfer function,
    % G2(s).
G3=tf(numg3,deng3); % Create LTI transfer function,
    % G3(s).
H1=tf(numh1,denh1); % Create LTI transfer function,
    % H1(s).
G4=G3*G2; % Calculate product of elevator and
    % vehicle dynamics.
G5=G4/(1+G4*H1); % Calculate closed-loop transfer
    % function of inner loop.
G5=minreal(G5); % Cancel common terms.
Ge=G5*G1 % Multiply inner-loop transfer
    % functions.
Pause
```


Method 3

```
\% Onwubolu, G. C.
\% Mechatronics: Principles \& Applications
\% Elsevier
\%
\% Mechatronics: Principles \& Applications Toolbox Version 1.0
\% Copyright © 2005 by Elsevier
\%
\% Chapter 12.4: Block diagrams
\% Example 12.8, Method 3
\% Solution via Append \& Connect Commands: MATLAB can be used for block diagram
\% reduction. Three methods are available: (1) Solution via Series, Parallel, \& \% Feedback Commands, (2) Solution via Algebraic Operations, and (3) Solution via
\% Append \& Connect Commands. Let us look at each of these methods. \%
\% (1) Solution via Series, Parallel, \& Feedback Commands:
\% The closed-loop transfer function is obtained using the following commands \% successively, where the arguments are LTI objects: series(G1,G2) for a cascade
\% connection of G1(s) and G2(s); parallel(G1,G2) for a parallel connection of \% G1(s) and G2(s); feedback(G,H,sign) for a closed-loop connection with G(s)
\% as the forward path, \(\mathrm{H}(\mathrm{s})\) as the feedback, and sign is -1 for negativefeedback
\(\%\) systems or +1 for positive-feedback systems. The sign is optional for \% negative-feedback systems.
\%
\% (2) Solution via Algebraic Operations:
\% Another approach is to use arithmetic operations successively on LTI transfer
```

\% functions as follows: G2*G1 for a cascade connection of G1(s) and G2(s); G1+G2
\% for a parallel connection of G1(s) and G2(s); G/(1+G*H) for a closed-loop $\%$ negative-feedback connection with $\mathrm{G}(\mathrm{s})$ as the forward path, and $\mathrm{H}(\mathrm{s})$ as the
\% feedback; G/(1-G*H) for positive-feedback systems. When using division we follow
\% with the function minreal(sys) to cancel common terms in the numerator $\%$ and denominator.
\%
\% (3) Solution via Append \& Connect Commands:
\% The last method, which defines the topology of the system, may be used effectively
\% for complicated systems. First, the subsystems are defined. Second, the subsystems
$\%$ are appended, or gathered, into a multiple-input/multiple-output system.
Think of
\% this system as a single system with an input for each of the subsystems and an
\% output for each of the subsystems. Next, the external inputs and outputs are
\% specified. Finally, the subsystems are interconnected. Let us elaborate on each
$\%$ of these steps.
\%
\% The subsystems are defined by creating LTI transfer functions for each.

The

\% subsystems are appended using the command G =
append(G1,G2,G3,G4,.....Gn), where
\% the Gi are the LTI transfer funtions of the subsystems and G is the appended system.
\% Each subsystem is now identified by a number based upon its position in the append
\% argument. For example, G3 is 3, based on the fact that it is the third subsystem in
\% the append argument (not the fact that we write it as G3).
\%
\% Now that we have created an appended system, we form the arguments required to
\% interconnect their inputs and outputs to form our system. The first step identifies
\% which subsystems have the external input signal and which subsystems have the
\% external output signal. For example, we use inputs = [156] and outputs = [3 4] to
\% define the external inputs to be the inputs of subsystems 1,5 and 6 and the external
$\%$ outputs to be the outputs of subsystems 3 and 4 . For single-input/singleoutput
$\%$ systems, these definitions use scalar quantities. Thus inputs $=5$, outputs $=$ 8 define
\% the input to subsystem 5 as the external input and the output of subsystem 8 as the
\% external output.
\%
\% At this point we tell the program how all of the subsystems are interconnected.
\% We form a Q matrix that has a row for each subsystem whose input comes from another
\% subsystem's output. The first column contains the subsystem's number. Subsequent
\% columns contain the numbers of the subsystems from which the inputs comes. Thus,
\% a typical row might be as follows: [3 6-7], or subsystem 3's input is formed from
\% the sum of the output of subsystem 6 and the negative of the output of subsystem 7.
\%
\% Finally, all of the interconnection arguments are used in the
\% connect(G,Q,inputs,outputs) command, where all of the arguments have been
\% previously defined.
\%
'Solution via Append \& Connect Commands'
\% Display label.
'G1(s) $=(-1)^{\star}(1 /(-s))=1 / s^{\prime} \quad$ \% Display label.
numg1=[1]; \quad \% Define numerator of G1(s).
deng1=[1 0]; \quad \% Define denominator of G1(s).
G1=tf(numg1,deng1) \% Create LTI transfer function,
$\%$ G1(s) = pitch gain*(1/pitch rate sensor).
'G2(s) $=(-s)^{\star}(3 /(s+3)$ ' \quad \% Display label.
numg2 $=[-30]$; \quad \% Define numerator of G2(s).
deng2=[13]; \quad \% Define denominator of G2(s).
G2=tf(numg2,deng2) \% Create LTI transfer function, \% G2(s) = pitch rate sensor* vehicle dynamics.
'G3(s) $=-0.2(s+0.5) /\left((s+1)\left(s^{\wedge} 2+0.5 s+0.05\right)\right)^{\prime}$
\% Display label.
numg3=-0.2*[1 0.5]; \quad \% Define numerator of G3(s).
deng3=conv([1 1],[1 0.50 .05$]) ;$
\% Define denominator of G3(s).
G3=tf(numg3,deng3) \% Create LTI transfer function, \% G3(s) = vehicle dynamics.
System=append(G1,G2,G3); \% Gather all subsystems input=1; \quad \% Input is at first subsystem, G1(s).
output=3; \% Output is output of third subsystem, G3(s). $\mathrm{Q}=[1-30 \quad$ \% Subsystem 1, G1(s), gets its input from the \% negative of the output of subsystem 3, G3(s).
\% Subsystem 2, G2(s), gets its input from subsystem \% 1, G1(s), and the negative of the output of \% subsystem 3, G3(s).
32 0]; \quad Subsystem 3, G3(s), gets its input from subsystem \% 2, G2(s).
T=connect(System, Q,input,output); \% Connect the subsystems.
'T(s) via Append \& Connect Commands'\% Display label.
$\mathrm{T}=\mathrm{tf}(\mathrm{T})$; \quad \% Create LTI closed-loop transfer function,
T=minreal(T) \% Cancel common terms.
pause

